Category: Modeling Subcategory: Transformer Subcategory: 4-winding

How do I model Four Winding Transformer in PTW?

Solution:

Using as reference "A Practical Guide to Short-Circuit Calculation" by Conrad St. Pierre, Page 37, users can model four-winding transformer as an 8 buses system.

> Network Reduction Techniques

Chapter 2

$$
\begin{aligned}
& K_{1}=\frac{Z^{2}}{Z \mathrm{e}+Z_{f}}=Z_{1 \cdot 3}+Z_{2-4}-Z_{1-2}-Z_{3-4} \\
& \mathrm{~K}_{2}=\frac{\mathrm{Zf}^{2}}{Z \mathrm{ee}+Z_{f}}=Z_{1-3}+Z_{2-4}-Z_{1-4}-Z_{2-3} \\
& \mathrm{Ze}=\left(\mathrm{K}_{1} \mathrm{~K}_{2}\right)^{1 / 2}+\mathrm{K}_{1} \\
& Z \mathrm{f}=\left(\mathrm{K}_{1} \mathrm{~K}_{2}\right)^{1 / 2}+\mathrm{K}_{2} \\
& K_{3}=\frac{Z e^{*} Z f}{2(Z e+Z f)} \\
& Z \mathrm{a}=\frac{Z_{1-2}+Z_{14}-Z_{24}}{2}-K_{3} \\
& Z \mathrm{~b}=\frac{Z_{1-2}+Z_{2,3}-Z_{1-3}}{2}-K_{3} \\
& Z \mathrm{Cc}=\frac{Z_{2-3}+Z_{3.4}-Z_{2-4}}{2}-K_{3} \\
& Z \mathrm{~d}=\frac{Z_{2-4}+Z_{1-4}-Z_{1-3}}{2}-\mathrm{K}_{3}
\end{aligned}
$$

Equations 2-18
Fig. 2-16 Equivalent Circuit of a Four-Winding Transformer

	Originated by: Mr.Li/Lowell	Date: 03/24/09
Checked by: Mr.Li/Lowell	Date: 03/24/09	
Technical Support Group		
	Revised by:	Date: 03/24/09
	Applicable to: All Version	Doc Rev No: 0
P.O. Box 3376, Manhattan Beach, CA 90266 - Tel: 310.698.4700, Fax: 310.698.4708 - www.skm.com		
1-4 © $\mathbf{4}$	© 2005 SKM Systems Analysis, Inc. All rights reserved	

FAQ

Four winding Transformer model can be modeled as an 8-bus system.

Example 1

To make things simple, assume $Z 13=Z 24=Z 12=Z 34=Z 14=Z 23=6.5 \%$. This means that the transformer is closely coupled/made. So that $\mathrm{K} 1=\mathrm{K} 2=\mathrm{Ze}=\mathrm{Zf}=0$.

This model can be translated into:

```
K1= Z13+Z24-Z12-Z34;
K2= Z13+Z24-Z14-Z23;
Ze= sqrt(K1*K2) + K1;
Zf = sqrt(K1*K2) + K2;
if(abs(Ze+Zf) < 0.00001)
    K3 = 0.;
else
K3=Ze*Zf/2./(Ze+Zf);
Za=(Z12+Z14-Z24)/2. -K3;
Zb=(Z12+Z23-Z13)/2. -K3;
Zc=(Z23+Z34-Z24)/2. -K3;
Zd=(Z34+Z14-Z13)/2. -K3;
```

Given:
Z13=Z24=Z12=Z34=6.5\%
Results:
$\mathrm{K} 1=\mathrm{K} 2=\mathrm{Ze}=\mathrm{Zf}=0$.
$Z a=Z b=Z c=Z d=3.25 \%$

	Originated by: Mr.Li/Lowell	Date: 03/24/09
Checked by: Mr.Li/Lowell	Date: 03/24/09	
Technical Support Group	Revised by:	Date: 03/24/09
	Applicable to: All Version	Doc Rev No: 0
$2-4$	P.O. Box 3376, Manhattan Beach, CA 90266 - Tel: 310.698.4700, Fax: 310.698.4708-www.skm.com	
© 2005 SKM Systems Analysis, Inc. All rights reserved		

FAQ

Below are results of example1 using an Excel calculator: Example 1:

Z12	Z13	Z14	Z23	Z24	Z34
6.5	6.5	6.5	6.5	6.5	6.5

$\mathrm{K} 1=\quad 0$
$\mathrm{K} 2=\quad 0$
$\mathrm{Ze}=\quad 0$
$\mathrm{Zf}=\quad 0$
K3= 0
$\mathrm{Za}=\quad 3.25$
$\mathrm{Zb}=\quad 3.25$
Zc= 3.25
Zd= 3.25
So in this case, there are four buses to model it.

	Originated by: Mr.Li/Lowell	Date: 03/24/09
Checked by: Mr.Li/Lowell	Date: 03/24/09 Revised by:	Date: 03/24/09 Applicable to: All Version
Doc Rev No: 0		

FAQ

Example 2

Given: $Z 13=5.5 \%, Z 24=5.5 \% \quad Z 12=6.5 \%, Z 34=5.5 \%$

Z12	Z13	Z14	Z23	Z24	Z34
6.5	5.5	5.5	5.5	5.5	5.5

$\mathrm{K} 1=\quad-1$
$\mathrm{K} 2=\quad 0$
$\mathrm{Ze}=0$
$\mathrm{Zf}=\quad 0$
K3= 0
$\mathrm{Za}=\quad 3.25$
$\mathrm{Zb}=\quad 3.25$
$\mathrm{Zc}=\quad 2.75$
$Z \mathrm{~d}=\quad 2.75$

If $Z 13, Z 24, Z 12, Z 34$ are not equal, "BUS-0005" could be expended into 4 buses. (Case 2 is a special case.) Ze and Zf can be calculated using equations given.

	Originated by: Mr.Li/Lowell	Date: 03/24/09
Checked by: Mr.Li/Lowell	Date: 03/24/09	
Technical Support Group		
	Revised by:	Date: 03/24/09
	Applicable to: All Version	Doc Rev No: 0
$4-4$	P.O. Box 3376, Manhattan Beach, CA 90266- Tel: 310.698.4700, Fax: 310.698.4708 - www.skm.com	
© 2005 SKM Systems Analysis, Inc. All rights reserved		

