

How do I model Four Winding Transformer in PTW?

Solution:

Using as reference "A Practical Guide to Short-Circuit Calculation" by Conrad St. Pierre, Page 37, users can model four-winding transformer as an 8 buses system.

	Originated by: Mr.Li/Lowell	Date: 03/24/09		
Technical Support Group	Checked by: Mr.Li/Lowell	Date: 03/24/09		
	Revised by:	Date: 03/24/09	كالباليا	
	Applicable to: All Version	Doc Rev No: 0	Systems Analysis, Inc.	
4 4	P.O. Box 3376, Manhattan Beach, CA 90266 - Tel: 310.698.4700, Fax: 310.698.4708 - www.skm.com			
1 - 4	© 2005 SKM Systems Analysis. Inc. All rights reserved			

Four winding Transformer model can be modeled as an 8-bus system.

Example 1

To make things simple, assume Z13=Z24=Z12=Z34=Z14=Z23=6.5%. This means that the transformer is closely coupled/made. So that K1=K2=Ze=Zf=0.

This model can be translated into:

 $\begin{array}{l} \mathsf{K1} = \mathsf{Z13} + \mathsf{Z24} - \mathsf{Z12} - \mathsf{Z34};\\ \mathsf{K2} = \mathsf{Z13} + \mathsf{Z24} - \mathsf{Z14} - \mathsf{Z23};\\ \mathsf{Ze} = \mathsf{sqrt}(\mathsf{K1}^*\mathsf{K2}) + \mathsf{K1};\\ \mathsf{Zf} = \mathsf{sqrt}(\mathsf{K1}^*\mathsf{K2}) + \mathsf{K2};\\ \mathsf{if}(\mathsf{abs}(\mathsf{Ze} + \mathsf{Zf}) < 0.00001)\\ \mathsf{K3} = 0.;\\ \mathsf{else}\\ \mathsf{K3} = \mathsf{Ze}^*\mathsf{Zf}/\mathsf{2}./(\mathsf{Ze} + \mathsf{Zf});\\ \mathsf{Za} = (\mathsf{Z12} + \mathsf{Z14} - \mathsf{Z24})/\mathsf{2}. + \mathsf{K3};\\ \mathsf{Zb} = (\mathsf{Z12} + \mathsf{Z23} - \mathsf{Z13})/\mathsf{2}. + \mathsf{K3};\\ \mathsf{Zb} = (\mathsf{Z23} + \mathsf{Z34} - \mathsf{Z24})/\mathsf{2}. - \mathsf{K3};\\ \mathsf{Zd} = (\mathsf{Z34} + \mathsf{Z14} - \mathsf{Z13})/\mathsf{2}. - \mathsf{K3};\\ \end{array}$

Given: Z13=Z24=Z12=Z34=6.5%

Results: K1=K2=Ze=Zf=0.

Za=Zb=Zc=Zd= 3.25%

	Originated by: Mr.Li/Lowell	Date: 03/24/09	
Technical Support Group	Checked by: Mr.Li/Lowell	Date: 03/24/09	
	Revised by:	Date: 03/24/09	لسلسلح
	Applicable to: All Version	Doc Rev No: 0	Systems Analysis, Inc.
2 - 4	P.O. Box 3376, Manhattan Beach, CA 90266 - Tel: 310.698.4700, Fax: 310.698.4708 - www.skm.com		
	© 2005 SKM Systems Analysis, Inc. All rights reserved		

Below are results of example1 using an Excel calculator: Example 1:

Z12 6.5	Z13 6.5	Z14 6.5	Z23 6.5	Z24 6.5	Z34 6.5
K1=	0				
K2=	0				
Ze=	0				
Zf=	0				
K3=	0				
Za=	3.25				
Zb=	3.25				
Zc=	3.25				
Zd=	3.25				

So in this case, there are four buses to model it.

-

	Originated by: Mr.Li/Lowell	Date: 03/24/09		
Technical Support Group	Checked by: Mr.Li/Lowell	Date: 03/24/09		
	Revised by:	Date: 03/24/09	كالباليا	
	Applicable to: All Version	Doc Rev No: 0	Systems Analysis, Inc.	
2 4	P.O. Box 3376, Manhattan Beach, CA 90266 - Tel: 310.698.4700, Fax: 310.698.4708 - www.skm.com			
3-4	© 2005 SKM Systems Analysis, Inc. All rights reserved			

Example 2

0.0	0.0	0.0	0.0	0.0	0.0
K1=	-1				
K2=	0				
Ze=	0				
Zf=	0				
K3=	0				
Za=	3.25				
Zb=	3.25				
Zc=	2.75				
Zd=	2.75				

If Z13, Z24, Z12, Z34 are not equal, "BUS-0005" could be expended into 4 buses. (Case 2 is a special case.) Ze and Zf can be calculated using equations given.

Technical Support Group	Originated by: Mr.Li/Lowell	Date: 03/24/09		
	Checked by: Mr.Li/Lowell	Date: 03/24/09	SKM	
	Revised by:	Date: 03/24/09		
	Applicable to: All Version	Doc Rev No: 0	Systems Analysis, Inc.	
4 - 4	P.O. Box 3376, Manhattan Beach, CA 90266 - Tel: 310.698.4700, Fax: 310.698.4708 - www.skm.com			
	© 2005 SKM Systems Analysis, Inc. All rights reserved			